Remote Sensing Systems www.remss.com

Two-Look Polarimetric (2LP) Microwave Radiometers for Ocean Vector Wind Retrieval

Frank Wentz, Kyle Hilburn, Thomas Meissner

Remote Sensing Systems

Shannon Brown Jet Propulsion Laboratory

IOVWST Meeting

Brest, France

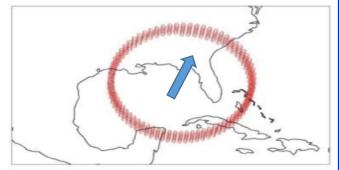
June 2-4, 2014

Introduction

Remote Sensing Systems

- US Department of Defense (DoD) recently funded a number of studies to defined future MW Weather Sensors (follow-on to SSM/I and SSM/IS programs)
- This time, priority was given to Ocean Vector Wind Retrievals
- Low-Cost was also a major requirement
- At least two of these studies recommended a two-look polarimetric (2LP) microwave radiometer: full 360° view, fully polarimetric.
- JPL's 2LP radiometer, called the Compact Ocean Wind Vector Radiometer (COWVR) is currently selected for a space demonstration in the 2016 timeframe.




COWVR Instrument Overview

- Fully polarimetric microwave radiometer (18 channels):
 - 18.7, 23.8, 33.9 GHz
 - V,H,+45,-45,LCP,RCP
 - < 0.3 K TB uncertainty</p>
- 360° conical imaging
 - Rotation rate: 30 RPM
 - Spatial resolution: < 35 km
 - 34x21 km@18.7 GHz; 18x11 km@33.9 GHz
 - Swath width: 1012 km
 - Earth Incidence Angle: 51.7°
- Internal Calibration
 - Correlated noise sources
 - PIN-diode Dicke switches
- Resources
 - Data rate: 77 kbps
 - Mass: 58.7 kg
 - Avg. Power: 41 W (inst. power)
- Heritage
 - Jason-2/3 Advanced Microwave Radiometer
- EDRs
 - Wind vector, precipitation, sea ice, precipitable water, cloud liquid water, snow depth, tropical cyclone intensity

For information on COWVR contact Shannon Brown (PI) <u>shannon.t.brown@ipl.nasa.qov</u>

Predicting 2LP Performance with WindSat

Remote Sensing Systems

- Predict the performance of 2LP radiometers using actual WindSat fore and aft observations.
- First Time (to our knowledge) WindSat fore and aft data have been simultaneously used for retrievals
- Focus on performance before ambiguity removal algorithm to look at inherent skill of sensor
 - Skill Rate: Percentage of time first-ranked ambiguity is closest to true direction
 - Standard Deviation of First-Rank Ambiguity relative to buoys

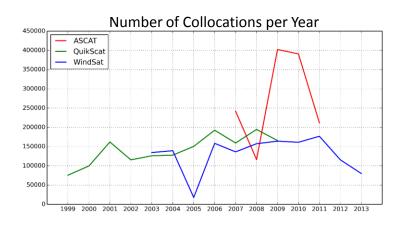
2LP OVW Chi-Squared Algorithm

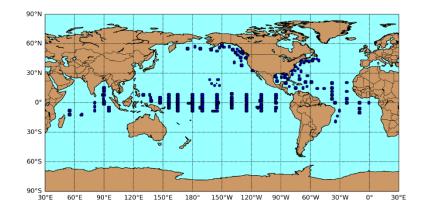
$$\chi^{2}(\phi_{W,j}) = \sum_{i} \frac{\left[T_{B,meas,i} - T_{B,rtm}\left(T_{S},W,\phi_{W,j},V,L,\theta_{i},\varphi_{i}\right)\right]^{2}}{\operatorname{var}(T_{B,i})}$$

- RSS RTM: *Meissner and Wentz* [2006]; *Meissner and Wentz* [2012]
- 18 'Flavors' of Observations provide a unique determination of wind direction.

Frequency (GHz)	Channel Combination	Expected Error (K)
10.7 GHz	V for-aft	0.3
	H for-aft	0.4
	T3 for	0.3
	T3 aft	0.3
	T4 for	0.2
	T4 aft	0.2
18.7 GHz	V for-aft	0.4
	H for-aft	0.7
	T3 for	0.2
	T3 aft	0.2
	T4 for	0.1
	T4 aft	0.1
37.0 GHz	V for-aft	0.6
	H for-aft	1.0
	T3 for	0.2
	T3 aft	0.2
	T4 for	0.1
	T4 aft	0.1

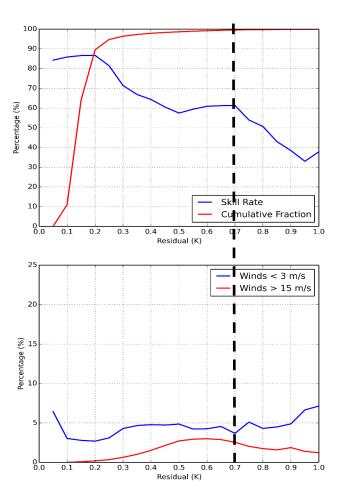
Remote Sensing Systems


Satellite Datasets


Remote Sensing Systems

- WindSat 2LP
 - Hilburn [2014] <u>http://images.remss.com/papers/rsstech/2014_Hilburn_053014_WindSat_L2A_Product_Specification.pdf</u>
 - Hilburn, Meissner, Wentz, and Brown [in preparation]
 - Time period: 2003-2014
- QuikScat (V4)
 - Ku-2011 GMF: Ricciardulli and Wentz [2011]
 - Time period: 1999-2009
- ASCAT (V1)
 - Consistent GMF for Ku- and C-bands: Ricciardulli and Wentz [2012]
 - Scatterometer Climate Data Records: Ricciardulli and Wentz [2014]
 - Time period of available data: 2007-2011
- Quality-control
 - "Rain free" requires radiometer rain = 0 mm/hour
 - Use sweet zone (3 or more flavors) for QuikScat, unless otherwise noted as full swath
 - Exclude retrievals with large sigma-0 residual (larger than 1.9)

In Situ Datasets


- Buoys: NDBC, MEDS, TAO, TRITON, PIRATA, RAMA
- Spatial radius: 25 km
- Temporal radius: 30 minutes
- WindSat had significant data outages in 2005
- From 2012 onward, buoy collocations decrease due to NOAA budget cuts for annual servicing

Remote Sensing Systems

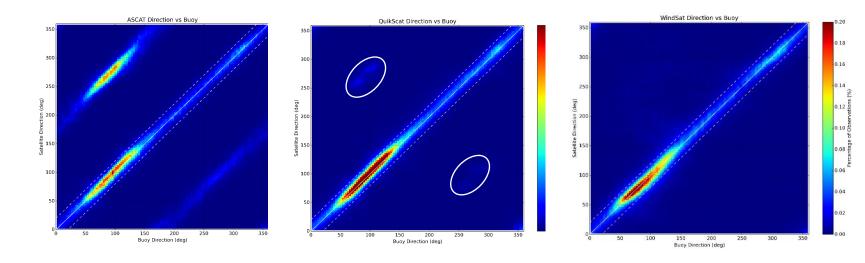
WindSat 2LP vs Chi-Square Residual

• The WindSat 2LP algorithm returns ambiguities ranked by sum of measured minus model TB difference squared, weighted by inverse of expected variance

• TOP:

 The skill rate is better than 85% for residuals below 0.2 K, which is 90% of the vectors

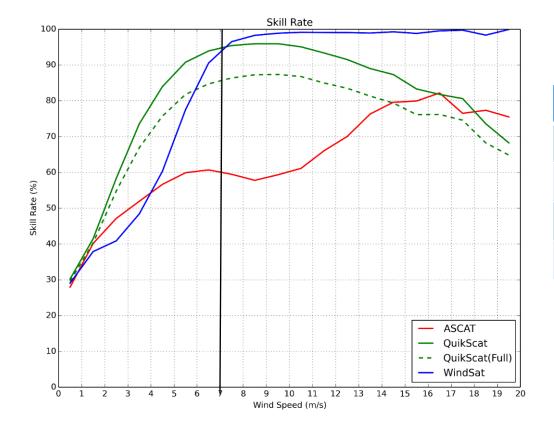
Remote Sensing Systems


- The skill rate is better than 60% for residuals below 0.7 K, which is 99.6% of dataset
- BOTTOM:
 - Residuals above 0.7 K do not preferentially select either low or high winds
- Thus, using 0.7 K as q/c threshold for rest of the statistics in this presentation; removes 0.4% of data

First Ranked Ambiguity vs Buoy Direction

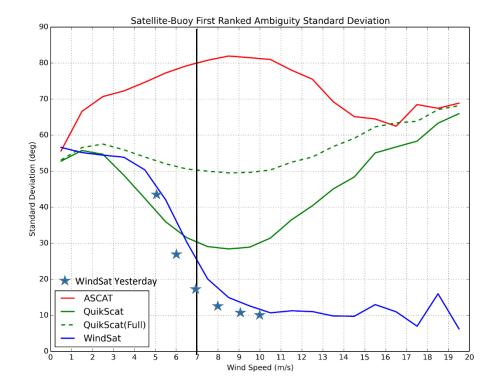
ASCAT

QuikScat


WindSat

- Shown: percentage of data in 3 deg by 3 deg bins of wind direction (meteorological)
- Rain free, buoy wind speeds > 3 m/s
- Dashed lines: +/- 20 deg

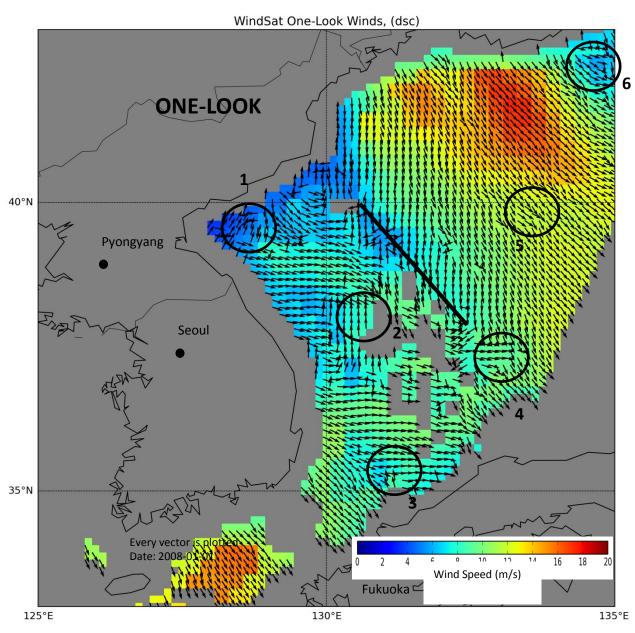
Dataset	% within 20 deg of buoy
ASCAT	54.45
QuikScat	82.18
QuikScat (full)	74.08
WindSat	72.90


Skill Rate vs Wind Speed

Dataset	Skill Rate (%)
ASCAT	58.7
QuikScat (full)	79.6
WindSat	85.3
QuikScat	87.6

Remote Sensing Systems

Directional Standard Deviation vs Wind Speed


 The only satellite to achieve better than 20 deg SD for FRA is WindSat, which does so for winds above 7 m/s

Remote Sensing Systems

- WindSat achieves about 10 deg SD for winds above 10 m/s
- Understand that SDs > 50 deg (i.e. ASCAT) are due to relatively small number of very large differences (usually +/- 180 deg)
- QuikScat SD are slightly better than WindSat for winds below 6 m/s
- QuikScat full swath is considerably worse than sweet zone for most winds
- QuikScat SD increases for winds above 9 m/s

2LP radiometers do not require an ancillary wind field for ambiguity removal for winds above 6-7 m/s.

Sea of Japan: One-Look Example

One-look has problems in:

Remote Sensing Systems

- Low wind speeds (1,3,6)
- Near rain (2,4)
- Moderate winds (5)
- Convergence zone (heavy black line) not clearly defined because of noisy vectors

Sea of Japan: Two-Look Example

WindSat Winds, (dsc) 40°N Pyongyang Seoul 35°N 10 10 16 18 2 Wind Speed (m/s) Fukuoka ⊏ 125°E 130°E 135°E

<u>Two-look is better</u> <u>in:</u>

Remote Sensing Systems

www.remss.com

- Low wind speeds (1,3,6)
- Near rain (2,4)
- Moderate winds (5)
- Convergence zone (heavy black line) is clearly defined

Every vector is plotted Date: 2008-01-01

Sea of Japan: Quik-Scat Example

QuikScat Winds (dsc) 6 QuikScat (12 hours later) 40°N Pyongyang Seoul 35°N 0 10 10 1/ 16 18 20 Wind Speed (m/s) Fukuoka 130°E 125°E 135°E

Different time of day Convergence

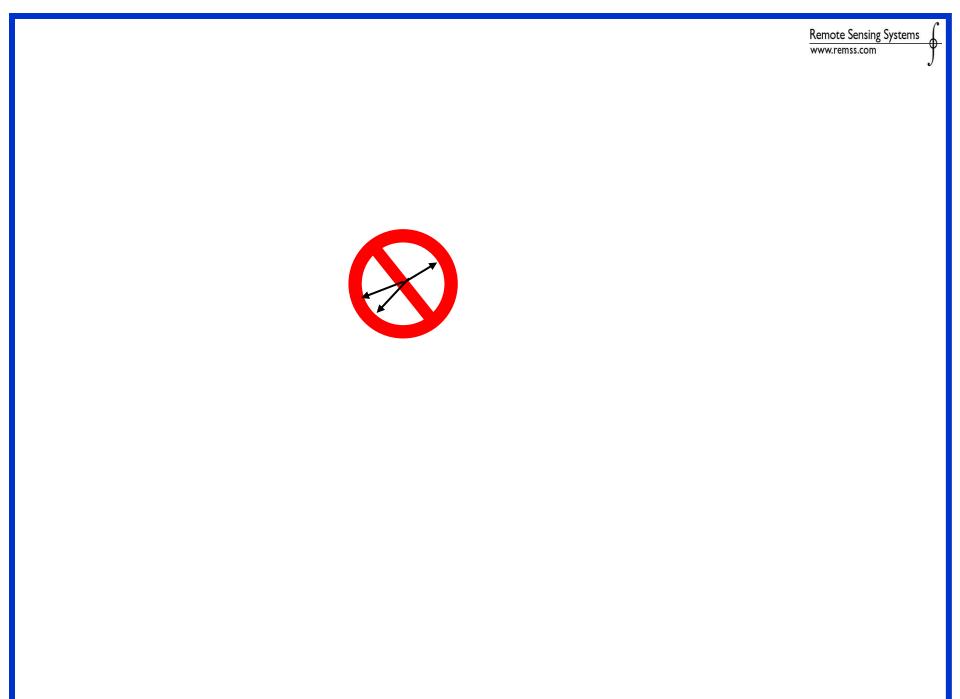
•

Remote Sensing Systems

www.remss.com

 Convergence zone... what convergence zone?

Every vector is plotted Date: 2008-01-01


Conclusions

Remote Sensing Systems

- 2LP radiometers provide ocean surface vector winds of comparable accuracy to scatterometers
- Vector wind retrievals from 2LP radiometers do not require an ancillary wind field for ambiguity removal for winds above 6-7 m/s.
- 2LP radiometers can also provide a full suite of climate variables:
 - Sea surface temperature through clouds (C-band required)
 - Total water vapor
 - Cloud liquid water path
 - Surface rain rate
 - Sea-Ice and snow
- Performance in rain need to be investigated

2LP Radiometers Appear to be a Cost-Effective Alternative for Sustainable OVW Climate Measurements

Take A Look For Yourself: 11 Years of Retrievals – REMSS.COM

